

WTA ZEB TRANSITION STUDY – DRAFT REPORT

03/21/2023 WTA PRESENTATION

MEETING AGENDA – STUDY OVERVIEW

- 1. Zero-emission technology overview
- 2. Policy & Funding
- 3. Operations Analysis

ZERO EMISSIONS TECHNOLOGY OVERVIEW

BATTERY ELECTRIC BUSES (BEB)

- 5 manufacturers producing BEBs
- 40' BEB ~ \$1.15 million
 - 40' Diesel ~ \$520,000
- Range (125-180 miles)
- Requires Charging Infrastructure
 - Costs \$150,000 \$700,000 per bus depending on type and configuration
- Cheaper to fuel than diesel

FUEL CELL ELECTRIC BUSES (FCEB)

- 2 manufacturers producing FCEBs
- 40' FCEB ~ \$1.25 million
 - 40' Diesel ~ \$520,000
- Range (260+ miles)
- Requires Fueling Infrastructure
 - Costs \$2.0 M \$5.0 M, depending on fleet size to support
 - Assumes \$4.5 M / 50 buses for this report
- Hydrogen availability is limited

TECHNOLOGY PROBLEM IDENTIFICATION

Challenges to Adoption and Operation	Battery Electric Buses	Fuel Cell Electric Buses
Vehicle Cost	~ 2X diesel bus	More than 2X diesel bus
Infrastructure Cost	Very High	Very High
Range	Less than ½ of diesel bus	3⁄4 of diesel bus range
Fueling Logistics	Hours to Charge	Minutes to Fuel
Available Fuel Source	Electricity not constrained	Lack of Available H2
	to no impact to WTA Or operation	impact on WTA g or operation

POLICY AND FUNDING

POLICY DRIVING ZEB ADOPTION

(50% GHG emissions reductions by 2030, net zero in 2050)

- Infrastructure Investment and Jobs Act (\$105 B for public transit, \$15 B for EV adoption)
- Inflation Reduction Act

(95% GHG reductions by 2050)

- Clean Fuel Standard
- WA State Climate Commitment Act
- Clean Energy Transformation Act
- ZEV Infrastructure Partnership Program
- SB 5910 (Renewable Hydrogen Generation)

- Whatcom County Climate Action Plan
- Bellingham Climate
 Protection Action Plan
- WTA 2040

POTENTIAL FUNDING SOURCES

State

- **USDOT** (*RAISE Grants*)
- FTA (Bus and Bus Facilities Discretionary Grant, Low/No Vehicle Grant, Urban Area Formula Grant, State of Good Repair, Flexible Funding Program – Surface Transportation Block Grant Program)
- EPA (Environmental Justice Collaborative Problem-Solving Cooperative Agreement Program)

Green Transportation Capital Grants

Bellingham Transportation Levy Fund

OPERATIONS ANALYSIS

OPERATIONS MODEL ANALYSIS (PEER)

- Detailed route models for all fixed-route service
- Assumes 40' Gillig BEB with degraded battery
- Routes combined to blocks
 - Included deadhead (MOAB to route to MOAB)
- Blocks Combined into Schedule (what bus does during the day)

Unusable energy bottom 470 kWh New (10% of total) Battery Service Energy Degraded 376 kWh Unusable energy top Battery (10% of total) 0 100 200 300 500 400 600 700 Energy (kwh)

Season	% Completable (Blocks)
Winter (without DFH)	57%
Winter (with DFH)	69%
Spring/Fall	79%
Summer	75%

Existing Blocks (How the schedule is composed)		Block Combinations (What the buses do during the day)	
# of Blocks	72 (<mark>50/22</mark>)	Combinations	49 (27/ <mark>22</mark>)
Completability	69%	Completability	55%

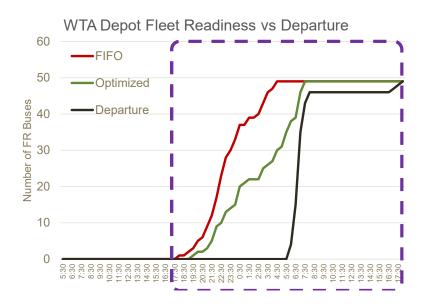
Service Energy for 588 kWh Pack

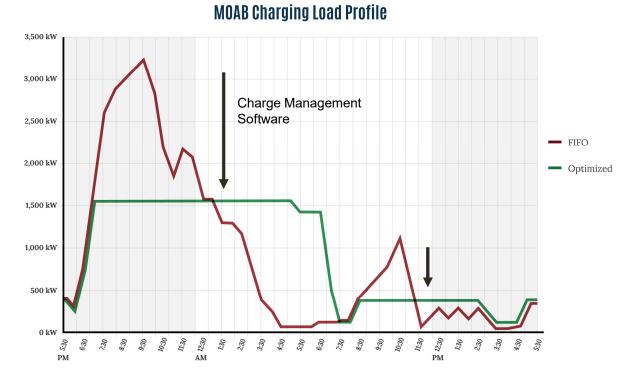
OPERATIONS MODEL ANALYSIS (PEER)

Block Combinations (588kWh Battery, 367kWh of Service Energy)		
Combinations	49 (27/ <mark>22</mark>)	
Completability	55%	

Analysis also done for 40' Gillig BEB with assumed 800 kWh nominal battery (+36% from existing) to test for future battery improvements

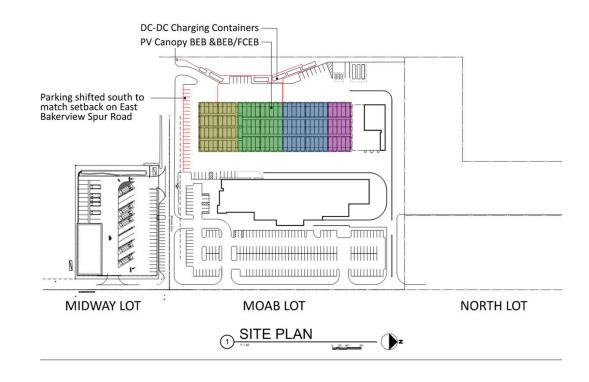
Future Block Combinations (800kWh Battery, 640kWh of Service Energy)		
Combinations	49 (47/2)	
Completability	96%	


2 block combinations not completable with future battery


- Requires on-route charging, FCEBs or changes to block schedule
- Model results suggest schedule could be easily tweaked to get to 100% completability

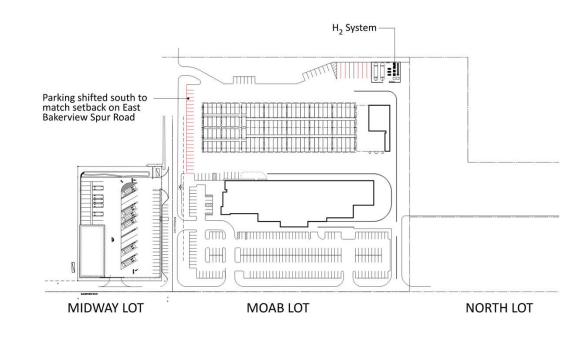
ELECTRICAL DEMAND

- **FIFO**: Charging buses on a first-in-firstout basis with no delays
- **Optimized**: Tries to reduce peak, and shift charging into the preferred window.


stv

MOAB SITE UPGRADES

MOAB LAYOUT AND UPGRADES – BEB OPTION


- Room for ~84 X 40' BEBs and chargers
- Deployed in stages
 - By colored groups if pantograph
 - As needed for plug-in
- ~2 MW additional electrical load capacity needed
- Backup Generator(s) (~2-3 MW)
- Increased fire suppression (coordination with fire dept.)
- Maintenance Bay Upgrades
- Staff safety training

MOAB LAYOUT AND UPGRADES - FCEB OPTION

- H₂ System would be a major one (or two) time investment
 - ~ \$4.5 million for station for 50 FCEBs (scaled by size)
- May need additional electrical capacity (H₂ compression)
- H₂ Detector Alarms
- Increased Ventilation
- Increased Fire Suppression
- Maintenance Bay Upgrades
- Staff Safety Training

