

WTA ZEB TRANSITION STUDY – DRAFT REPORT (PART 2)

04/17/2023 WTA PRESENTATION

st\'

MEETING AGENDA – STUDY OVERVIEW

 MOAB Facility Needs
Transition Options (cost and GHG estimates)

3. Future / Near Term Planning

MOAB SITE UPGRADES

MOAB LAYOUT AND UPGRADES – BEB OPTION

- Room for ~84 X 40' BEBs and chargers
- Deployed in stages
 - By colored groups if pantograph
 - As needed for plug-in
- ~2 MW additional electrical load capacity needed
- Backup Generator(s) (~2-3 MW)
- Increased fire suppression (coordination with fire dept.)
- Maintenance Bay Upgrades
- Staff safety training

MOAB LAYOUT AND UPGRADES – FCEB OPTION

- H₂ System would be a major one (or two) time investment
 - ~ \$4.5 million for station for 50 FCEBs (scaled by size)
- May need additional electrical capacity (H₂ compression)
- H₂ Detector Alarms
- Increased Ventilation
- Increased Fire Suppression
- Maintenance Bay Upgrades
- Staff Safety Training

TRANSITION PLAN OPTIONS

TRANSITION PLAN – WTA OPTIONS

Currently 62 buses in FR fleet

- 52 diesel, 8 hybrids, 2 BEBs
- 2023 -> 2 BEBs (& dispensers)
- 2024 -> 8 BEBs (& dispensers)
- Short Term Plan Buy Hybrids to enter service in 2025, 2026, 2027
- Use intervening years to evaluate new BEBs, follow ZEB market, and make site upgrades

+# indicates planned fleet expansion

TRANSITION PLAN – WTA OPTIONS

Option 1 – all BEB

- Requires significant infrastructure investment
- BEBs are cheaper to buy (and fuel?) compared to FCEB
- Charging logistics

Option 2 – all FCEB after 2027

- Requires infrastructure investment (less than BEB)
- FCEB more expensive to buy and fuel(?) than BEB
- Single largest issue with FCEB is lack of available H₂

Option 3 – BEB and FCEB Blend

- Can align technology with route demands, more flexible operations
- Requires both types of infrastructure upgrades (hydrogen compressor station and BEB chargers, increased staff training and safety)

TOTAL COST OF OWNERSHIP

Numbers shown do not account for any grants or funding awards.

GREENHOUSE GAS ESTIMATES

GREENHOUSE GAS ASSUMPTIONS

Diesel

- 1 gallon of diesel produces ~22.46 lbs CO,e (CO, equivalen
- carbon emissions for refining and transporting diesel fuel, which would increase the GHG impact of diesel is not included
- WTA fuel consumption is expected to increa proportionally with fleet size

Electricity

- » 1 kWh of electricity from Puget Sound Energy (PSE) currently produces 0.8986 lbs CO₂e
- PSE to produce 100 percent carbon free electricity in 2045
 - The analysis assumed a linear relationship between 2022 carbon emissions and 2045 carbon emissions per kWh of electricity generated
 - 2040 estimate for 1 kWh of electricity = 0.19 lbs CO₂e

H2 Hydrogen

- 1 kg of hydrogen currently produces approximately 20.5 lbs CO₂e via the Steam Methane Reforming process (which accounts for 99 percent of hydrogen generated in the US)
 - This emissions rate of hydrogen generation is assumed to be reduced by 50% by 2040, linearly each year.
- » Hydrogen is assumed to be trucked to the WTA facility, where it would be stored as a liquid in tanks before undergoing compression and pumping into the FCEB. This compression is assumed to require ~1kWh per kg of hydrogen

https://www.energypolicy.columbia.edu/research/article/hydrogen-fact-sheet-production-low-carbon-hydrogen

Process	Grey Hydrogen	Blue Hydrogen	Green Hydrogen
	Reforming or gasification	Reforming or gasification with carbon capture	Electrolysis
Energy Source	Fossil fuels	Fossil fuels	Renewable electricity
Estimated Emissions from Production Process (Ibs of CO2e/kg of hydrogen)	Reforming: 9-11 Gasification: 18-20	0.4-4.5	0

ESTIMATED EMISSIONS - BEB OPTION

- ~85% reduction in annual emissions by 2040
- Assumed GHG-free in 2045 (based on state mandate)

ESTIMATED EMISSIONS - FCEB OPTION

- 60% reduction from 2022 levels
- 12.5% increase over BEB option
- Not assumed to be a net-zero option by 2045

Assumes hydrogen generation is 50% GHG free by 2040

NEAR AND LONG TERM PLANNING

CURRENT WTA TRANSITION TIMELINE

- 2023 2 BEBs (and chargers) arrive
- 2024 8 BEBs (and chargers) arrive
- 2025 Hybrids
- 2026 Hybrids
- 2027 order new ZEB technology

Where is ZEB market going?

What should WTA do after 2027?

WHAT DO WE EXPECT TO HAPPEN WITH ZEB TECH?

Better Batteries

(~5% increase in energy density/year although last 3 years saw > 30% increase, 440->588 kWh)

Can be purchased today To be purchased in the future Number of Buses Battery Capacity (kWh)

Battery Capacities Needed for WTA Daily Fixed-Route Operation

WHAT DO WE EXPECT TO HAPPEN WITH ZEB TECH?

Increased Hydrogen Availability

- SB 5910 aiming to make WA a hub of hydrogen production
- IIJA included \$8 billion for clean hydrogen research and deployment
- US Department of Energy Goal -> \$2 / kg of green hydrogen by 2026
- Douglas PUD -> hydroelectric hydrogen production starting in June 2024

WTA – RECOMMENDED PLAN

- 2. Explore Charge Management Software Tools.
- 3. Proactively Monitor ZEB Industry.

2023

June 2024

- 1. Can WTA procure hydrogen reliably at a reasonable cost to ensure potential FCEBs can be fueled?
- 2. Can WTA procure up to 20 FCEB vehicles reliably?
- 3. How well are BEBs operating?
- 4. Has BEB battery capacity continued to expand?
- 5. What level of electrical improvements are needed to bring additional power to MOAB to charge future BEBs?

Site Design for Selected Technology (BEB or

H, Fueling Station)

2024

WTA – RECOMMENDED PLAN

