

WHATCOM TRANSIT ZEB TRANSITION PLAN

06/16/2022 WTA BOARD PRESENTATION

MEETING AGENDA

- 1. Meet the Team
- 2. Our Experience
- 3. Project Schedule
- 4. Summary of Zero Emission Bus Technologies
 - Battery electric
 - Fuel cell
- 5. Q&A

OUR TEAM

transpogroup 7

Chris Titze AICP/PP Transit SME

Paul Sharman PE Electrification Lead

Paul Kaufmann ZEB Procurement SME

Michael Broe Fleet and Facilities Electrification SME

Jason Rogers Vehicle Engineering

OUR EXPERIENCE WITH ZEB

Transpo Group

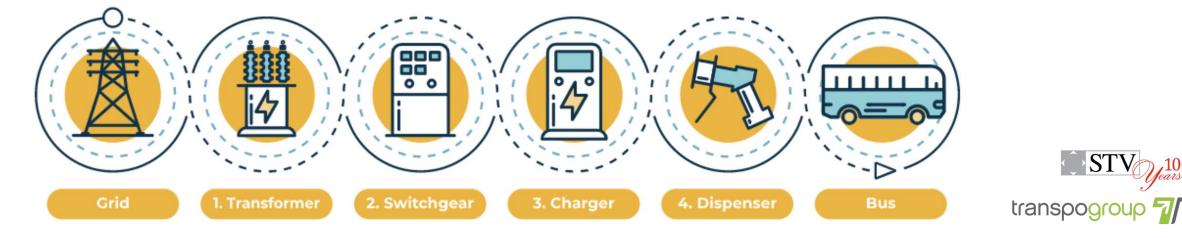
- JTA Electric Bus Feasibility Study (with STV)
- Transit Orange Alternative Fuels Study (with STV)
- Seatac Airport shuttle electrification study

STV

- ZEB Master Plan for LA Metro
- Toronto Transit Commission Master Plan for Bus/Paratransit/Non-Revenue Fleets
- ZEB Infrastructure Planning for NCTD
- ZEB Master Plans for NYPA (including 5 agencies)
- ZEB Transition Plans for HRT and Pace Bus

PROJECT SCHEDULE

	2022						
WORK TASK	JUNE	JULY	AUG	SEPT	OCT	NOV	DEC
Task 1: Project Management & Board Meetings	0			2	3		
Task 2: Existing Fleet & Operations		1		2	3		
Task 3: Technology Assessmen t							
Task 4: Policy and Strategy Summary							
Task 5: Route Planning and Analysis							
Task 6: Facility Needs							
Task 7: Zero Emission Transition Plan						B	
Task 8: Long-term Planning							
	Executive		Board Meetings			Deliver	ables
512	off Meeting	s 1.	Project Ove	rview/Techno	ology A.	Draft Zerc	Emission F
		2.	2. Operations Analysis		B.	. Final Zerc	Emission P
		З.	Draft Plan				I



STATE OF BEB OPERATIONS I

- A. Charge via plug-in (150-200 kW), pantograph (150-450 kW), or induction (wireless, 150-350 kW)
- B. 200 kW charger can charge a bus in 3-4 hrs
- C. 5 manufacturers currently provide Altoona tested BEBs that are Buy America Compliant (Gillig, New Flyer, Nova Bus, ElDorado, Proterra)

- D. Bus Charging performed via depot or on-route charging (or combination)
- E. Sustainability and Resiliency explore onsite energy storage options
- F. Encourage utility negotiations to provide a transit specific tariff

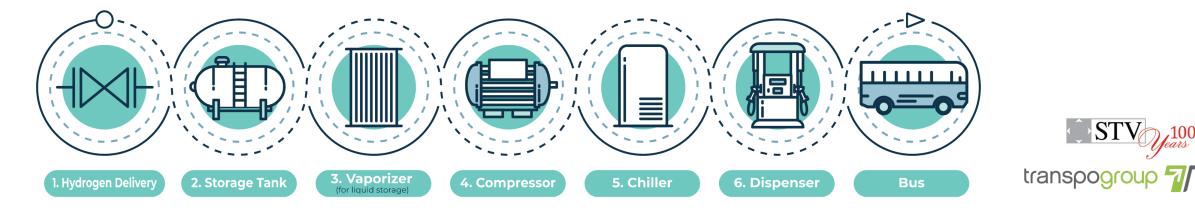
STATE OF BEB OPERATIONS II

- 25% increase in battery energy density over last 5 years (with similar gains expected going forward)
- Recent TTC Report comparing bus availability for revenue service between diesel-hybrid and three BEB manufacturers
 - New Flyer 89%, BYD 52%, Proterra 62%, compared to Diesel/Hybrid at 95%
- BEB Charging Infrastructure ~\$1,000/kW, so 150 kW charger = \$150,000 + transformers, conduit, cabling, fire suppression, etc.
- BEBs have higher upfront costs but lower operating/maintenance costs over the life of the bus
- Carbon footprint how does utility generate electricity?

2021 PSE	Μιχ
Coal	23%
Hydroelectric	24%
Natural Gas	27%
Nuclear	<1%
Other	1%
Solar	1%
Unspecified	14%
Wind	9%
Total	100%

2045 PSE Mix

100% Carbon-free electric supply



STATE OF FCEB OPERATIONS I

- A. Battery-dominant fuel cell bus technology is the use of on-board hydrogen storage, supplied to fuel cell which generates electricity for batteries/electric drivetrain to power bus. FC emissions are heat and water
- B. FCEB is currently closer to 1:1 replacement of diesel buses than BEB, due to increased range and similar refueling times as CNG buses but cost more than BEB/CNG/Hybrid/Diesel

- C. Hydrogen refueling/facility costs are significantly higher than BEB/CNG/Hybrid/Diesel
- D. 2 OEMs currently produce Altoona tested FCEBs

STATE OF FCEB OPERATIONS II

- Lack of available hydrogen
- Hydrogen is expensive
 - Significant difference for cost of hydrogen from on-site generation vs. trucking in hydrogen
- Emissions from hydrogen processing and distribution are currently high
- Only a handful of agencies have deployed this technology across the country

OEM	Bus Length	Battery Size	Range	Cost
Gillig	35'	588 kWh	~225 mi	\$1.10 M
	40'	588 kWh	~200 mi	\$1.15 M
New Flyer	40'	525 kWh	~225 mi	\$1.25 M
	60'	525 kWh	~200 mi	\$1.4 M
Nova Bus	40'	564 kWh	~225 mi	\$1.25 M
Proterra	35'	492 kWh	~200 mi	\$1.15 M
	40'	492 kWh	~200 mi	\$1.25 M

Altoona Tested BEB Available as of 2022

OEM	Bus Model	Bus Leng th	Fuel Cell Power	Battery Capacity	OEM- Advertise d Range	Cost
ENC Axes	Axess-FC	35'	100kW	Not provided	225+ mi	\$1.15 M
		40'	100kW	Not provided	260+ mi	\$1.25 M
New Flyer	ЦО	40'	160kW	150kWh	350	\$1.25 M
		60'	320kW	150kWh	300	\$1.55 M

Altoona Tested FCEB Available as of 2022

